LOCK FLOOR

JOINT PROFILE FOR CLT PANELS

MULTI-STOREY WALLS

Ideal for connecting CLT floor panels to multi-story walls (concrete or CLT). The hooking system enables installation without the use of shoring or temporary support structures.

FAST INSTALLATION

The profiles can be pre-installed on CLT panels and walls, without additional fastening on site during installation.

VERSATILE

Easy and quick to install, it can be fastened with a single type of screw. Joint that can be easily disassembled, ideal for the construction of permanent and temporary CLT structure.

CHARACTERISTICS

FOCUS joints that can be disassembled for CLT panels					
PANEL THICKNESS	minimum thickness 140 mm				
STRENGTH	R _{vk} up to 70 kN/m				
FASTENERS	LBS, SKS-CE				

VIDEO

Scan the QR Code and watch the video on our YouTube channel

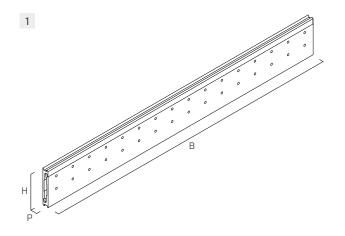
MATERIAL

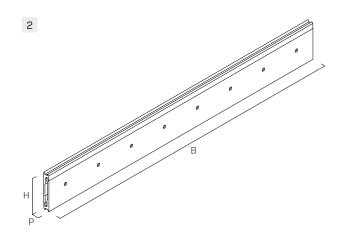
Aluminium alloy.

FIELDS OF USE

Timber-to-timber or timber-to-concrete shear joints:

- CLT, LVL panels
- glulam (Glued Laminated Timber)


CLT FLOORS


The timber-to-timber version is specifically designed for attaching floors to multi-story CLT walls. The hooking system is particularly suitable for prefabricated floors.

NEW POSSIBILITIES

The geometry of the connector is also suitable for non-standard applications, e.g. for the installation of stair stringers, non-structural walls, etc.

CODES AND DIMENSIONS

CODE	B [mm]	H [mm]	P [mm]	n _{screw} x Ø ⁽¹⁾ pcs	n _{anchors} x Ø ⁽¹⁾	pcs ⁽²⁾			
1 LOCKTFLOOR135	1200	135	22	64 - Ø7	-	1	•	-	-
2 LOCKCFLOOR135	1200	135	22	32 - Ø7	8 - Ø10	1	•	•	•

ADDITIONAL PRODUCTS - FASTENING

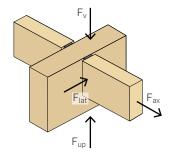
CODE	description	material		d ₁ [mm]	L [mm]	d ₀ [mm]	T _{inst} [Nm]	TX	pcs
LBS780	round head screw for plates	bright zinc plated carbon steel	<i>← </i>	7	80	-	-	TX 30	100
SKS10100CE	screw anchor with countersunk head for concrete	bright zinc plated carbon steel		10	100	8	50	TX 40	50

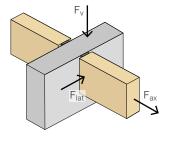
MATERIAL AND DURABILITY

LOCK T FLOOR: EN AW-6005A aluminium alloy. To be used in service classes 1 and 2 (EN 1995-1-1).

FIELD OF USE

• Timber-to-timber joints between structural elements made of CLT, LVL and glulam


MATERIAL AND DURABILITY


LOCK C FLOOR: EN AW-6005A aluminium alloy. To be used in service classes 1 and 2 (EN 1995-1-1).

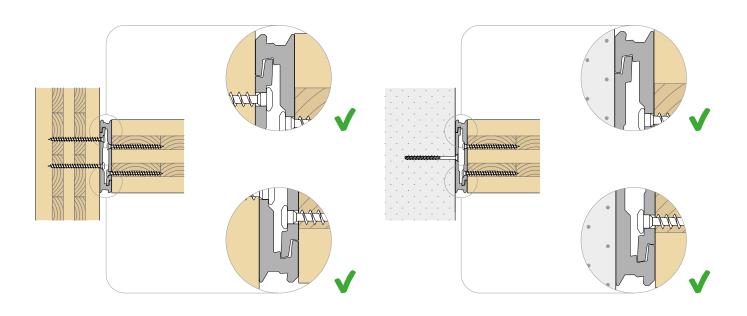
FIELD OF USE

• Timber-to-concrete or timber to-steel joints

EXTERNAL LOADS

Screws and anchors not included in the package.

(1) Number of screws and anchors for connector pairs.
(2) Number of connector pairs.

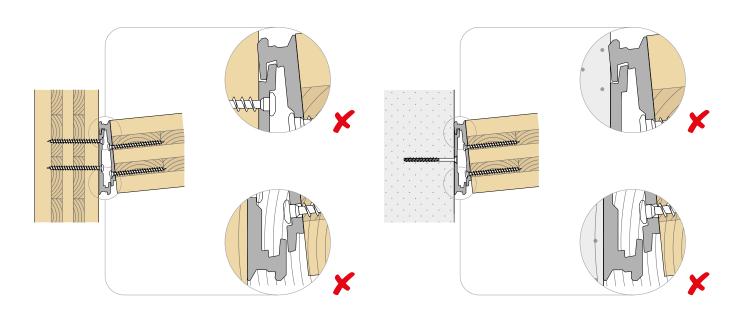

INSTALLATION METHODS

CORRECT INSTALLATION

Install the panel by lowering it from the top, without tilting. Ensure proper seating and coupling of the connector at both the top and bottom, as shown in the figure.

TIMBER-TO-TIMBER

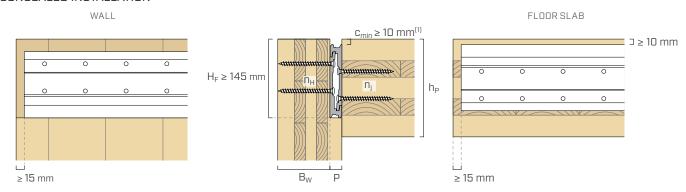
TIMBER-TO-CONCRETE

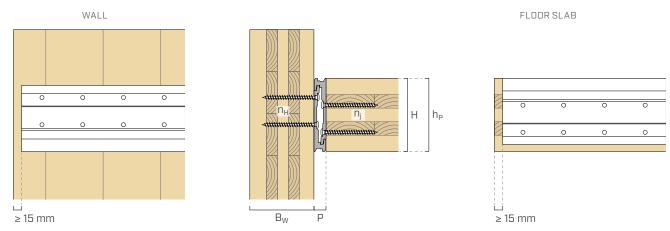


INCORRECT INSTALLATION

Partial and incorrect coupling of the connector. Ensure that both flanges of the connector are properly seated in their respective seats.

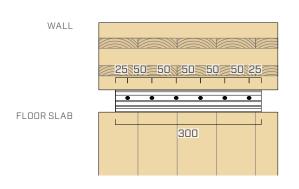
TIMBER-TO-TIMBER

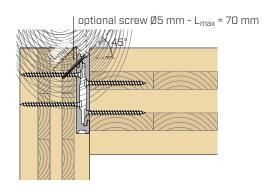

TIMBER-TO-CONCRETE



LOCK T FLOOR INSTALLATION

CONCEALED INSTALLATION

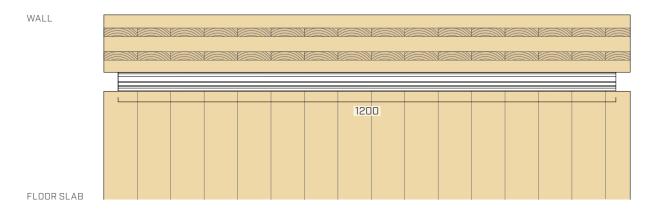

VISIBLE INSTALLATION



	connector		fasteners	CLT wall	CLT floor	
			LBS screws			
CODE	ВхН	no. of modules ⁽²⁾	n _H + n _j - Ø x L	B _{w, min}	h _{p, min}	
	[mm]		[mm]	[mm]	[mm]	
	300 x 135	1	8 + 8 - Ø7 x 80			
LOCKTFLOOR135	600 x 135	2	16 + 16 - Ø7 x 80	80	135 ⁽¹⁾	
LOCKIFLOOKISS	900 x 135	3	24 + 24 - Ø7 x 80	80	133,-,	
	1200 x 135	4	32 + 32 - Ø7 x 80			

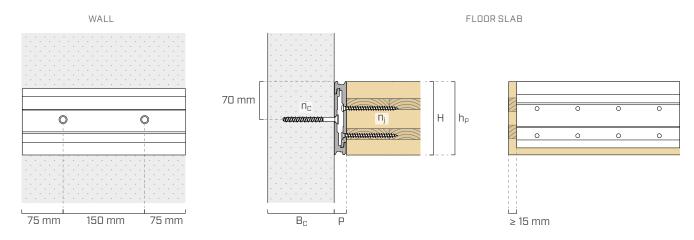
OPTIONAL INCLINED SCREW

45° inclined holes must be drilled on site using a 5 mm diameter and metal drill bit. The image shows the location of optional inclined holes for a 300 mm wide module.


NOTES:

- $^{(1)}$ Alignment between the top of floor and top of wall can be achieved by lowering the connector $c_{min} \geq 10$ mm from the top of the CLT floor. This ensures the minimum distance requirements for screws in the wall are met, with respect to the upper end of the wall. In this case, the minimum thickness of the h_p floor is 145 mm.
- $^{\rm (2)}$ The 1200 mm long connector can be cut into 300 mm standard length modules.

■ LOCK T FLOOR INSTALLATION

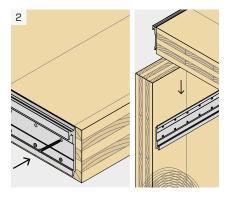

CONTINUOUS INSTALLATION

DISCONTINUOUS INSTALLATION

■ LOCK C FLOOR INSTALLATION

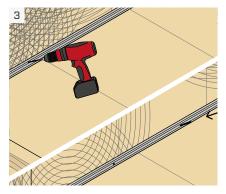
connector			fasteners	concrete wall	fasteners	CLT floor	
		SKS-CE anchors		LBS screws			
CODE	BxH	no. of modules ⁽¹⁾	n _c - Ø x L	B _{c, min}	n _j - Ø x L	h _{p, min}	
	[mm]		[mm]	[mm]	[mm]	[mm]	
	300 x 135	1	2 - Ø10 x 100		8 - Ø7 x 80		
LOCKCFLOOR135	600 x 135	2	4 - Ø10 x 100	120	16 - Ø7 x 80	175	
LOCKCFLOOKISS	900 x 135	3	6 - Ø10 x 100	120	24 - Ø7 x 80	135	
	1200 x 135	4	8 - Ø10 x 100		32 - Ø7 x 80		

 $^{^{(1)}}$ The 1200 mm long connector can be cut into 300 mm standard length modules.



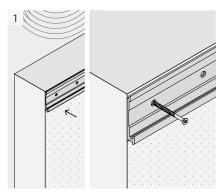
INSTALLATION

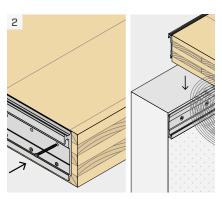
LOCK T FLOOR - VISIBLE INSTALLATION



Place the connector on the wall and fasten all screws.

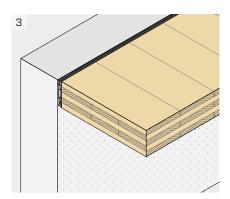
Place the connector on the floor and install all screws.


Engage the floor from the top to the bottom. Make sure that the two LOCK connectors are parallel to each other and avoid subjecting them to excessive strain during installation.


It is possible to install screws for uplift, and lateral shear transfer, F_{up} by drilling \emptyset 5 inclined holes at 45° in the upper part of the connector.

A Ø5 screw must be installed in the hole.

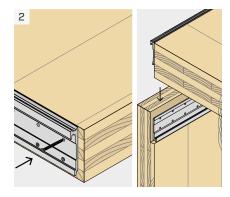
LOCK C FLOOR - VISIBLE INSTALLATION



Place the connector on concrete and fasten the anchors according to the installation instructions.

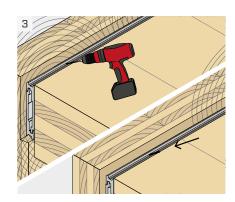
Place the connector on the floor and install all screws.

Engage the floor from the top to the bottom.



Make sure that the two LOCK connectors are parallel to each other and avoid subjecting them to excessive strain during installation.

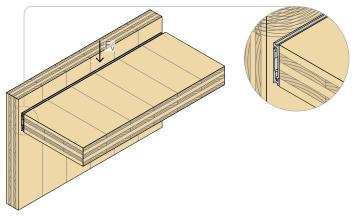
LOCK T FLOOR - CONCEALED INSTALLATION

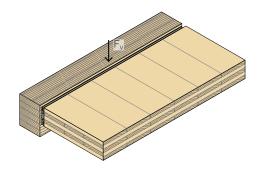


Cut the rebate on the main element. Place the connector on the wall and fasten all screws.

Place the connector on the floor and install all screws.

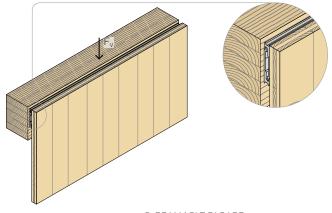
Engage the floor from the top to the bottom. Make sure that the two LOCK connectors are parallel to each other and avoid subjecting them to excessive strain during installation.




It is possible to install screws for uplift, and lateral shear transfer, F_{up} by drilling \emptyset 5 inclined holes at 45° in the upper part of the connector.

A Ø5 screw must be installed in the hole.

lacksquare STRUCTURAL VALUES | TIMBER-TO-TIMBER JOINT | F_{v}



1. CLT WALL | CLT FLOOR

2. BEAM | CLT FLOOR

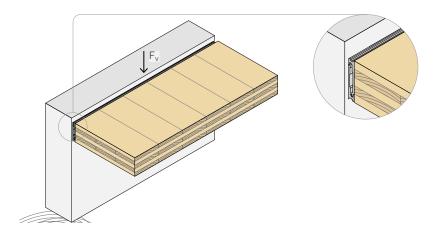
connector			TIM	ALUMINIUM	
			LBS screws R _{v,k timber}		R _{v,k alu}
CODE	ВхН	no. of modules ⁽¹⁾	$n_H + n_j - \emptyset x L$		
	[mm]		[mm]	[kN]	[kN]
	300 x 135	1	8 + 8 - Ø7 x 80	21,4	240
LOCKTELOOP175	600 x 135	2	16 + 16 - Ø7 x 80	42,7	480
LOCKTFLOOR135	900 x 135	3	24 + 24 - Ø7 x 80	64,1	720
	1200 x 135	4	32 + 32 - Ø7 x 80	85,5	960

lacktriangled STRUCTURAL VALUES | TIMBER-TO-TIMBER JOINT | F_{ν}

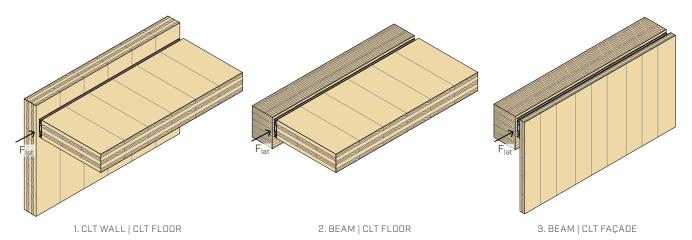
3. BEAM | CLT FAÇADE

connec	connector		TIM	ALUMINIUM	
			LBS screws	R _{v,k timber}	R _{v,k alu}
CODE	BxH	no. of modules ⁽¹⁾	$n_H + n_j - \emptyset x L$		
	[mm]		[mm]	[kN]	[kN]
	300 x 135	1	8 + 8 - Ø7 x 80	28,5	240
LOCUTELOOD175	600 x 135	2	16 + 16 - Ø7 x 80	57,0	480
LOCKTFLOOR135	900 x 135	3	24 + 24 - Ø7 x 80	85,6	720
	1200 x 135	4	32 + 32 - Ø7 x 80	114,1	960

NOTES:


GENERAL PRINCIPLES:

• For the general principles of calculation, see page 12.


⁽¹⁾ The 1200 mm long connector can be cut into 300 mm standard length modules.

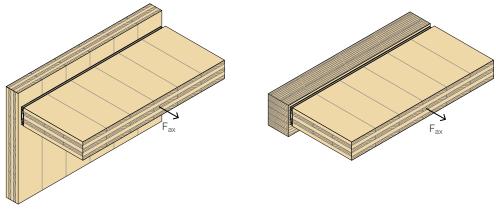
lacktriangled STRUCTURAL VALUES | TIMBER-TO-CONCRETE JOINT | F_{v}

connector			TIMBER		ALUMINIUM	UNCRAC CONCR	
			LBS screws	R _{v,k timber}	R _{v,k alu}	SKS-CE anchors	R _{v,d concrete}
CODE	ВхН	no. of modules ⁽¹⁾	n _j - Ø x L			n _c - Ø x L	
	[mm]		[mm]	[kN]	[kN]	[mm]	[kN]
	300 x 135	1	8 - Ø7 x 80	21,4	240	2 - Ø10 x 100	24,6
LOCKCELOOD17E	600 x 135	2	16 - Ø7 x 80	42,7	480	4 - Ø10 x 100	47,9
LOCKCFLOOR135	900 x 135	3	24 - Ø7 x 80	64,1	720	6 - Ø10 x 100	71,0
	1200 x 135	4	32 - Ø7 x 80	85,5	960	8 - Ø10 x 100	94,1

■ STRUCTURAL VALUES | TIMBER-TO-TIMBER JOINT | Flat

connector			faste	TIMBER	
		LBS screws	LBS inclined screw	R _{lat,k timber}	
CODE	BxH	no. of modules ⁽¹⁾	n _H + n _j - Ø x L	n - Ø x L	
	[mm]		[mm]	[mm]	[kN]
	300 x 135	1	8 + 8 - Ø7 x 80	6 - Ø5 x 70	8,7
LOCKTFLOOR135	600 x 135	2	16 + 16 - Ø7 x 80	12 - Ø5 x 70	18,0
LOCKIFLOORISS	900 x 135	3	24 + 24 - Ø7 x 80	18 - Ø5 x 70	25,4
	1200 x 135	4	32 + 32 - Ø7 x 80	24 - Ø5 x 70	32,5

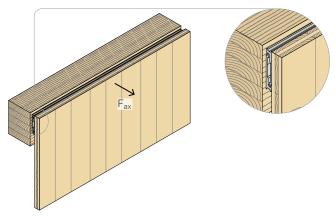
NOTES:


GENERAL PRINCIPLES:

• For the general principles of calculation, see page 12.

⁽¹⁾ The 1200 mm long connector can be cut into 300 mm standard length modules.

■ STRUCTURAL VALUES | TIMBER-TO-TIMBER JOINT | Fax



1. C	LT	WA	LL	CL	T.	Fl	LO	R

2. BEAM | CLT FLOOR

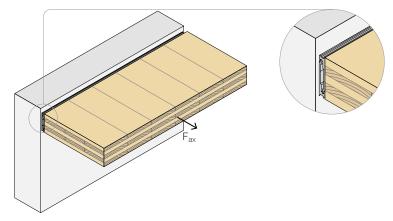
connector			TIM	ALUMINIUM	
			LBS screws	R _{ax,k timber}	R _{ax,k alu}
CODE	BxH	no. of modules ⁽¹⁾	n _H + n _j - Ø x L		
	[mm]		[mm]	[kN]	[kN]
	300 x 135	1	8 + 8 - Ø7 x 80	28,5	32,3
1 OCUTEL OOD475	600 x 135	2	16 + 16 - Ø7 x 80	57,1	64,6
LOCKTFLOOR135	900 x 135	3	24 + 24 - Ø7 x 80	85,6	96,9
	1200 x 135	4	32 + 32 - Ø7 x 80	114,1	129,2

■ STRUCTURAL VALUES | TIMBER-TO-TIMBER JOINT | Fax

3. BEAM | CLT FAÇADE

connector			TIM	ALUMINIUM	
			LBS screws	R _{ax,k timber}	R _{ax,k alu}
CODE	BxH	no. of modules ⁽¹⁾	n _H + n _j - Ø x L		
	[mm]		[mm]	[kN]	[kN]
	300 x 135	1	8 + 8 - Ø7 x 80	37,9	32,3
LOCUTELOOD17E	600 x 135	2	16 + 16 - Ø7 x 80	75,8	64,6
LOCKTFLOOR135	900 x 135	3	24 + 24 - Ø7 x 80	113,6	96,9
	1200 x 135	4	32 + 32 - Ø7 x 80	151,5	129,2

NOTES:

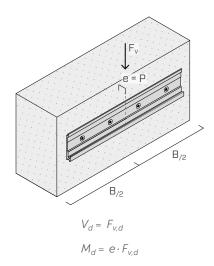

GENERAL PRINCIPLES:

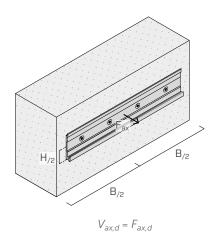
For the general principles of calculation, see page 12.

⁽¹⁾ The 1200 mm long connector can be cut into 300 mm standard length modules.

■ STRUCTURAL VALUES | TIMBER-TO-CONCRETE JOINT | Fax

connector			TIMBER		ALUMINIUM	UNCRACKED CONCRETE	
			LBS screws	R _{ax,k timber}	R _{ax,k alu}	SKS-CE anchors	R _{ax,d concrete}
CODE	BxH	no. of modules ⁽¹⁾	n _j - Ø x L			n _c - Ø x L	
	[mm]		[mm]	[kN]	[kN]	[mm]	[kN]
LOCKCFLOOR135	300 x 135	1	8 - Ø7 x 80	28,5	25,3	2 - Ø10 x 100	20,3
	600 x 135	2	16 - Ø7 x 80	57,1	50,6	4 - Ø10 x 100	39,3
	900 x 135	3	24 - Ø7 x 80	85,6	75,9	6 - Ø10 x 100	58,5
	1200 x 135	4	32 - Ø7 x 80	114,1	101,2	8 - Ø10 x 100	77,8


STRUCTURAL VALUES


DESIGN OF ALTERNATE FASTENERS AND ANCHORS

For fastening with anchors other than those indicated in the table, the calculation on concrete may be performed with reference to the ETA of the chosen anchor and the diagrams below.

In the same way, the calculation of fasteners on steel can be carried out in accordance with national design standards for steel structures, following the diagrams below.

The fastener group shall be designed for shear force and eccentric moment equal to:

where:

• e = 22 mm for LOCKTFLOOR135

H height of LOCK FLOOR connector
 B width of the LOCK FLOOR connector

NOTES:

 $^{
m (1)}$ The 1200 mm long connector can be cut into 300 mm standard length modules.

GENERAL PRINCIPLES:

For the general principles of calculation, see page 12.

GENERAL PRINCIPLES:

- Dimensioning and verification of concrete and timber elements must be carried out separately. In particular, it is recommended to perform a splitting check for loads perpendicular to the grain of timber elements.
- The connector must always be fully fastened using all the holes.
- Fastening with partial nailing is not allowed. Screws with the same length must be used for each connector half.
- Pre-drilled holes are not required for screws on secondary beam, with characteristic density $\rho_k \leq 420 \text{ kg/m}^3$. The pre-drilling is mandatory on secondary beam with characteristic density $\rho_k > 420 \text{ kg/m}^3$.
- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the installation tables. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from those in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete strength must be calculated separately (see the DESIGN OF ALTERNATE FASTENERS AND ANCHORS section).
- The following verification shall be satisfied for combined loading:

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 \leq 1$$

STRUCTURAL VALUES | F_v - F_{ax}

- CLT and GL24h: values calculated according to ETA-19/0831, ETA-11/0030 and EN 1995-1-1 for screws without pre-drilled holes. The published characteristic resistances are conservative for screws installed in pre-drilled holes. $\rho_k=350~kg/m^3$ for CLT and $\rho_k=385~kg/m^3$ for GL24h have been considered for calculations.
- Design values can be obtained from characteristic values as follows:

$$R_{v,d \; timber} = \frac{R_{v,k \; timber} \cdot k_{mod}}{\gamma_{M}}$$

$$R_{v,d \; alu} = \frac{R_{v,k \; alu}}{\gamma_{M2}}$$

$$R_{v,d \; concrete}$$

$$R_{ax,d \ imber} = \frac{R_{ax,k \ timber} \cdot k_{mod}}{\gamma_{M}}$$

$$R_{ax,d \ alu} = \frac{R_{ax,k \ alu}}{\gamma_{M2}}$$

$$R_{ax,d \ concrete}$$

where:

- γ_M is the partial safety coefficient of timber.
- γ_{M2} is the partial safety coefficient of the aluminium material subject to tensile stress, to be taken according to the national standards used for calculation. If there are no other provisions, it is suggested to use the value provided by EN 1999-1-1, equal to γ_{M2}=1,25.

STRUCTURAL VALUES | F_{lat}

- Values calculated according to ETA-19/0831, ETA-11/0030 and EN 1995-1-1 for screws without pre-drilled holes. $\rho_{k}=350~\text{kg/m}^{3}$ for CLT and $\rho_{k}=385~\text{kg/m}^{3}$ for GL24h have been considered for calculations.
- Design values can be obtained from characteristic values as follows:

$$R_{lat,d} = \frac{R_{lat,k \; timber} \cdot k_{mod}}{\gamma_M}$$

where

• γ_M is the partial safety coefficient of timber

CONNECTION STIFFNESS | F_v

 Connection stiffness can be calculated according to ETA-19/0831, with the following equation:

$$K_{v,ser} = \frac{n \cdot \rho_m^{1,5} \cdot d^{0,8}}{30} \quad N/mm$$

where:

- d is the diameter of the screw thread in the secondary beam, in mm;
- ρ_m is the average density of the secondary beam, in kg/m³;
- n is the number of screws in the secondary beam.

